

CS/IT Honours Final Paper 2019

Title: 3 Visual Ways to Teach Recursion

Author: Shakeel Mohamed

Project Abbreviation: BBRV

Supervisors(s): Jecton Anyango, Hussein Suleman

Category Min Max Chosen

Requirement Analysis and Design 0 20 20
Theoretical Analysis 0 25 0
Experiment Design and Execution 0 20 0
System Development and Implementation 0 20 20
Results, Findings and Conclusion 10 20 10
Aim Formulation and Background Work 10 15 10
Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section
allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

ABSTRACT

Recursion is an important and powerful computational problem-

solving tool, however many students find it hard to understand

conceptually and challenging to utilize in a practical coding

environment when applied to a given problem. This paper aims to

outline the design and development of a stack simulation software

tool that can be used to help students visualize the execution of their

recursive solutions to a specific set of recursion-based problems.

The simulation aims to facilitate the learning experience and

provide learners with a deeper and more intuitive understanding of

recursion with emphasis on the active and passive flow of the call

stack that occurs behind the scenes. The tool was found to be useful

in helping students better understand what the call stack is and how

their recursive programs execute.

KEY CONCEPTS

Active and passive flow of recursion.

1. INTRODUCTION

Recursion is one of the most important programming concepts in

computer science. It allows the creation of extremely simple

algorithmic solutions to certain problems that would otherwise be

unsolvable or inefficient with any other type of approach. It is a

fundamental concept in computer science, whether it is understood

as a programming technique or even a mathematical concept [1]. It

is regarded as a challenging topic to learn for students being

introduced to the world of computer science [8]. Educators often

find it a difficult topic to teach as well [2]. Most people are first

introduced to an iterative or loop based style of programming to

solve problems, which shares many similarities with recursion and

this often bewilders the beginner. Its applications in computer

programming cannot be understated and many students fail to grasp

the concept as it is taught in lectures and textbooks and thus may

find it difficult to cope with more advanced topics taught later in

many courses. Many classic examples are taught, such as factorial,

Towers of Hanoi, Fibonacci numbers and binary search. However,

simply learning the code or algorithms do not promote or illustrate

the concept of recursive thinking in a visual or interactive way.

Visualization is a highly efficient method for demonstrating

difficult to learn concepts [3]. It is well known that concrete

conceptual models can be better understood than abstract

conceptual models [4]. Being able to see and understand when and

how each recursive call is executed can be invaluable to one’s

understanding of recursion but this can be taken further.

Using visuals to teach programming concepts is not uncommon and

has proven to be a fun and engaging way to promote learning [5].

Teaching programming visually is something that has been

explored, however there are very few visualizations that are

specific to recursion [5, 6, 7]. Few attempts have been made to

visualize the concept of recursion especially when the payoff for

achieving this can be tremendous [2]. Being able to easily teach

such a challenging topic and promote interest in it could

substantially reduce the initial confusion many people have and

remove the misconception that recursion is a daunting method of

solving problems where an iterative solution could be easier (and

possibly slower).

This paper aims to outline the design and development process of a

call stack simulator program designed to help learners understand

the concept of recursion in an interactive environment. The

program produces a visualization of the call stack of a user’s

recursive solution to a given recursive problem. The user enters

their coded solution into a built-in text editor and is able to play a

call stack simulation of what their code does. Section 2 discusses

related software’s that perform similar functions to what was

developed. Section 3 details the user requirements gathered during

an interview process with learners while section 4 explains the

development process. Finally, section 5 reveals the results of user

testing.

2. RELATED WORK

Recursion is a method of problem-solving that involves the

decomposition of a problem into subproblem(s) of the same nature

until a base case is reached. The composition of these problems

solves the original. Many students fail to understand the “active”

and “passive” flow of recursion and the use of the stack for

backtracking [8]. The active flow refers to when the program

explicitly calls the recursive function and places it on the stack. The

passive flow refers to the backward “popping” of function calls on

the stack. The passive flow begins when the active flow has reached

its base case. More specifically, they visualize recursion as a loop

structure and each recursive call as iteration, which is not true. It is

well known that visualization can play an important role in

understanding abstract concepts [4]. Visual analogies of recursion

do exist and research into real-life examples of recursion has been

done as a number of papers have been written in this regard.

Examples such as parking cars [9], delegating tasks [10] and the

Cargo-Bot game [5] aim to give context to recursion in the real

world. Pirolli and Anderson [11] claim that the fact that there are

very few analogies for recursive problems is what makes it difficult

to learn. Kurland and Pea [12] discovered that students often

develop an incorrect or skewed mental understanding of recursion

through standard classroom and textbook learning. Kahney and

Eisenstadt [13] examined inexperienced students’ judgments of

given recursive solutions to problems and came to the conclusion

that they developed one of several mental conceptions of recursion,

which they named “copies”, “loop”, “odd”, “null”, and “syntactic

magic”. All these models except for the “copies model” are

considered to be incorrect.

One of the most important aspects of recursive programming that

needs to be considered and understood is the role of the stack. The

stack is a LIFO (Last In First Out) data structure, that is, it retrieves

information in the reverse order that it was stored in [18]. It stores

the recursive functions’ parameters and local variables at the time

it is called and thus saves the state of the function at the specific

point during which it was executed. When the recursive function

eventually returns via its base case, the stack unwinds.

UCT 20 April 2019, Cape Town, South Africa S. Mohamed. .

Many popular IDE’s provide functionality to display the current

state of the call stack and allow the user to manually step through

their code to see the pushing and popping of the recursive calls as

their program executes. Figure 1 is an example of the way the call

stack and variables are displayed from Oracle’s IDE, “Netbeans”

[17] (highlighted in red).

The call stack displayed by Netbeans is not very visual in nature

and only displays each recursive call with its input parameters.

When a call is popped from the stack it simply disappears rather

than display what value or string it returned in the process.

Fred Bartels [16] developed a visualization of the stack in order to

better help students understand how calls are pushed and popped

during the execution of a recursive program. The simulation made

use of Google SketchUp to build a block tower with each block

representing a call to the recursive function with its input parameter

displayed on top of it. The simulation was premade and did not use

actual code as input, however the way the stack was presented was

simple and easy to understand.

MUPPETS (Multi-User Programming Pedagogy for Enhancing

Traditional Study) is a game where students are tasked with

interacting with 3D objects in a virtual game environment [14].

Java is the required language for this game. Students can create

their own code, edit existing code, compile and run said code and

have direct feedback just like a traditional IDE would provide with

the additional perk of having the changes appear in the game. The

problem with this approach is that it barely differs from traditional

coding assignments and simply adds a visualization to the students’

completed code.

With regards to alternative methods of assessment, rather than the

typical “code your solution in a regular IDE” type, an example is

given below of the game “EleMental: The Recurrence” [15]. In

EleMental, a code editor is provided as well as a simulated game

world that visualizes the execution of the written code. The player

is expected to edit the pre-written code in order to traverse a tree in

this game. This game allows the user to see a direct relationship

between their code and the visual simulation. The UI design allows

for easy interaction with the code editor and provides a wide view

of the game world.

3. REQUIREMENTS ANALYSIS

For requirements gathering, an interview was conducted with first

year computer science students from the University of Cape Town.

At the time the interviews took place, the students had already been

taught recursion in their CSC1015F class. The software tool is

aimed at these students which is the reason why the interviews were

conducted with them. 10 first year students were interviewed.

The students were asked two questions relating to the stack

simulation aspect of the tool to be designed. The first question

asked if students found the concept of recursion challenging, and if

so, what they found difficult about it. The second question asked if

Figure 3: EleMental: The Recurrence screenshot [15]

Figure 1: Screenshot of the Netbeans IDE call stack window[17]

Figure 2: Stack visualization by Fred Bartels [28]

 UCT 20 April 2019, Cape Town, South Africa

the students would find a visual simulation of the call stack useful,

and if so, what would they like to see in terms of functionality and

visuals. Their responses were written down during the interview

and summarized below:

80% of students responded saying that the way recursion was

taught was very abstract and taught too fast. While the other 20%

felt they understood the concept as it was taught. A student made

the point that they found it difficult to shift thinking in terms of

loops to thinking recursively. 50% of students made the claim that

they needed more practice with the concept to familiarize

themselves with it. At least 70% of students said they found it

difficult to visualize what was happening within their code and not

many good analogies were given to help them. The different parts

of a recursive solution were hard to figure out such as what the base

case should be or how the problem should get smaller with each

iteration.

Due to the student’s familiarity with standard IDE’s such as

Netbeans [17], there needed to be a text coding interface with

similar functions or visual look.

In terms of what students would like in a visual stack simulation,

there seemed to be an even split between students who preferred a

2D and 3D simulation. This seemed to be entirely up to preference

as no strong opinions were expressed for either one. 60% of

respondents claimed to make use of the debugger on their favourite

IDE’s (such as Netbeans [17]) in order to see some indication of

the call stack but many claimed that it could be difficult to

understand especially for more complex solutions. The simulation

needs to be simple to understand. Students wanted to see the state

of the parameters being passed to each recursive call in order to get

a clearer picture of the shrinking problem size. Almost all students

described some sort of 3D/2D render of an animated stack of

books/blocks/plates growing and shrinking with the execution of

their program when asked to come up with a visualization idea. It

was suggested that there be an option to slow down or speed up the

animation so students could understand it at their own pace.

The simulator should therefore be able to take a students’ coded

solution (in python) as input and generate a stack simulation based

on how their program executes, specifically displaying how each

recursive call is put on the stack (active flow) as well as popped

from the stack (passive flow). The student should be able to see the

parameters change with each call and what is returned. The

simulation should have the option to manually step through the

calls or have it play out automatically. There should be some form

of error handling in the event of an incorrect solution being

compiled.

Section 3.1 describes the student’s interaction with the system (use

case narrative). Describing what pre and post conditions are

required for the successful use of the simulation. As well as the

typical and alternate course of actions a student is able to take when

interacting with the software.

3.1 USE CASE NARRATIVE

Expanded Use Case Play a simulation

Actors Student

Brief Description Student compiles the given

code and plays the simulation

Preconditions Student must complete the

necessary missing code. No

stack overflow errors

Post conditions Solution must be checked for

accuracy and user notified

Typical Course of Events

Student Action Simulator Response

1. Complete correct coding

solution

2. Compile code Generate .py and execute it.

Play simulation

3. Click replay with step

enabled

Replay simulation with

manual step

Restart simulation Reload entire question

Alternate Course of Events

Student Action Simulator Response

1. Complete incorrect coding

solution

2. Compile code Generate .py and execute it.

Display error

3. Edit code with correct

solution

4. Compile code Generate .py and execute it.

Play simulation

3.2 NON-FUNCTIONAL REQUIREMENTS

3.2.1 PERFORMANCE

The simulation should operate efficiently and smoothly with no

drops in frame rate or stuttering. The student’s code should be

compiled quickly and output displayed.

3.2.2 USABILITY

The simulator should be easy and intuitive to make use of. All UI

elements should have a clear function to avoid confusion. All user

interaction should provide visual feedback.

UCT 20 April 2019, Cape Town, South Africa S. Mohamed. .

3.2.3 COMPATIBILITY

The simulator program should be compatible with any standard

Windows computer. No additional hardware is required for a

smooth experience with the software.

Figure 4 is a use case diagram, outlining the basic functions the

student is able to use while using the stack simulator as well as an

activity diagram showing the series of actions the student can take.

4. SYSTEM DESIGN AND IMPLEMENTATION

This section outlines the development process that was taken and

details the different components of the software and how they

interact to produce the stack simulation.

4.1 SOFTWARE DEVELOPMENT PROCESS

An agile type software development approach was used with

multiple iterations spanning one week each. Integration with the

other components of the final software only needed to be done at

the end and the stack simulation did not depend on any other aspect

of the software and thus the development process went smoothly.

The contents of each iteration can be seen in section 5.6.

4.2 HIGH LEVEL DESIGN

The design of the stack simulator can be broken up into 3

component: The python interpreter, which compiles and runs the

students solution from the text editor; The question classes, which

are responsible for modifying the students completed solution in

order to get accurate information on the state of their variables

during runtime (done using trace statements); and the stack

creator, which makes use of the output of their program in order

to produce the stack animation. A class diagram can be seen in

Figure 5.

The structure and relationship between the classes needed to run

the simulation are relatively basic. A brief explanation for each of

the classes is described below:

RunPythonCode.cs – Takes the students input and compiles it using

the New Process Initialization construct provided by C# as well as

the installed python interpreter on the computer its running on. The

output of the program is displayed to the student via the UI and the

answer is checked to see whether it is correct or not or if there has

been a stack overflow. A notification is displayed depending on this

outcome. A text file containing the output of the trace statements is

also produced.

StackCreator.cs – This class is responsible for reading in the text

file created by the compiled python code and creating an array to

store this information. If it was successful in reading this

information, a coroutine is started which creates the stack

animation using the block and instruction block game objects to do

so. The animation runs until it is complete unless the student has

selected the step toggle, which allows the stack to be created one

block at a time.

Figure 4: Use case diagram

Figure 5: Stack simulation class diagram

 UCT 20 April 2019, Cape Town, South Africa

Block.cs – When a block game object is instantiated by the stack

creator, it checks what information needs to be displayed on it by

accessing the array mentioned previously from the StackCreator

class. The class also is responsible for the destruction/fading of the

block when it gets popped from the stack.

InstructionBlock.cs – Similarly to the Block class, once instantiated

by the stack creator, the information to be displayed on it is

determined by its corresponding block game object’s information

(the block adjacent to it).

Factorial.cs, Square.cs, Power.cs and BinaryTree.cs – These

classes are grouped together as they all do essentially the same

thing. They are responsible for taking the students input and adding

the necessary trace statements at the appropriate break points and

saving them to the corresponding .py file that RunPythonCode.cs

compiles.

Figure 6 below describes the flow of actions the user can perform.

The simulator can be reset at any point.

Additional system UML diagrams can be found on this project’s

website [20].

4.3 RECURSION QUESTIONS

The type of recursive problems decided on were based on a set

criterion. Due to the software being aimed at first year students who

would have only recently been introduced to the concept of

recursion, the questions chosen are basic and number based. The

number questions chosen are:

• Factorial – Calculating the factorial of a specific number

recursively.

• Power – Calculating the power of an expression given a

base and exponent recursively.

• Square – Calculating the square of a given number

recursively.

An additional more complex question was added as a bonus

exercise. This question requires performing a recursive post order

traversal of a given binary tree.

Scaffolding code is provided to the students to use as a basis for

their solution. This approach aims to limit the complexity of the

problem and provides a starting point [15].

The solutions for each of the problems can be seen below. The

omitted part of the solution that the student needs to complete are

indicated by a red square. The code below was written in the Wing

IDE.

Factorial:

Power:

Figure 6: Stack simulation activity diagram

UCT 20 April 2019, Cape Town, South Africa S. Mohamed. .

Square:

Binary Post Order Traversal:

It may be important to once again note that the simulator is aimed

at first year students who most likely do not have much experience

with recursion let alone programming in general. This was the

reason the chosen questions are relatively basic as well as the fact

that the solutions to these problems are simple. Students only have

to complete a maximum of two lines of code. The emphasis is

placed on the understanding of the active and passive flow of

recursion rather than the coding of the solution.

4.4 RUNNING PYTHON SCRIPTS

The student’s solution to the given question is written in python and

therefore needs to be compiled by a python interpreter. It may be

important to note that python needs to be installed on the machine

that runs the software as the game makes use of the install path in

order to compile the written code.

The process of compilation is as follows:

1) The written code is first saved to a string and written to a

text file with a .py extension.

2) The saved python script is called using the New Process

Initialization method provided by C#. This method

requires an external python interpreter to be installed.

The output of executing this script is saved.

3) Output is displayed to the student via the UI. If there is a

stack overflow error (this is likely to be the most common

error for recursive solutions other than syntax errors), a

visual warning is displayed.

The alternative to using the basic New Process Initilization method

is to use the IronPython interpreter (an open source implementation

of the python programming language integrated with the .NET

framework). It was decided not to use IronPython as the extra

functionality it provides was not necessary due to the expected low

complexity of the compiled code.

4.5 STACK CREATION

The creation and simulation of the stack is done at compile time.

The stack needs to show various information relating to each

recursive call such as the parameters passed and the return

statement. This information is retrieved from the compiled python

script in the following manner:

Once the student compiles their code, the contents of the text input

field (see section 4.6) is first saved to an array with each element in

the array corresponding to a line of code. This array is then

modified and additional trace statements are added at specific

points in the code, namely, before each return statement. Python

provides the inspect and sys modules, which can be used to access

variables used or maintained by the interpreter. These modules are

used to attain the state of variables at different points during the

execution of the program. The variables are written to a text file,

which can then be accessed later in order to provide the necessary

information for the creation of the stack. An example of the

appended power.py file with these trace statements is shown in

Figure 7 as well as the text file it produces in figure 8. The red

indicates the lines of code that are added after the student has

compiled the solution.

 UCT 20 April 2019, Cape Town, South Africa

The contents of the output file are stored in an array, which is used

to put the necessary information on each stack block. This can be

seen in figure 9.

4.6 ERROR HANDLING

In order for the simulator to be robust, there needed to be sufficient

error handling for when students enter the incorrect solution to the

problem. Error handling is dealt with the python interpreter and

displayed to the user via the output field. When dealing with

problems that require a recursive solution, a common error students

may encounter is the “Stack overflow” error. This error occurs

when a program tries to use more memory space than the calls stack

has available. A visual error in the case of a stack overflow is

displayed as shown below.

4.6 UI DESIGN

The UI was designed to be simple and easy to use, with emphasis

on the actual stack animation. Simple and minimalistic colours and

UI elements were chosen to not be a distraction from the

simulation. The UI provides a basic button layout with an input

field and output field. A large “correct” or “wrong” notification is

displayed once the students’ solution is compiled. The output is

displayed in the output field as well as at the top of the simulation.

An explanation for the function of each button can be seen below:

Figure 7: Power.py with trace statements

Figure 8: Text file output of Power.py

Compile Replay

Reset

Sim

Step once

Main stack simulation UI

Figure 9: Fully built stack for recursive power

Figure 10: Stack overflow error

Input

field Call

stack

Return statement
Step once

Step toggle

Output

field

UCT 20 April 2019, Cape Town, South Africa S. Mohamed. .

Compile button – Takes the student’s input and compiles it.

Reset button – Resets the entire simulation and code.

Replay button – Only resets the stack simulation. Code remains the

same.

Step toggle – Enables or disables the ability to slowly step through

the stack creation.

Step button – Iterates once through the stack.

4.7 DESIGN PROCESS

The design process took a total of 7 iterations spanning one week

each. What was achieved in each iteration is specified below:

Iteration 1: Developing a method of compiling python code in C#

using built in libraries. This was described in section 4.4.

Iteration 2: Developing the general stack animation. This included

the animated blocks being pushed and popped onto the stack.

Iteration 3: Designing the UI. This included gathering assets from

the Unity Asset store specifically for the button designs.

Iteration 4: Designing the factorial and power question and creating

a stack simulation for it.

Iteration 5: Designing the square and binary question and creating

a stack simulation for it.

Iteration 6: Dedicated to bug fixes and tweaking visual elements

of the UI.

Iteration 7: Integration with the other components of the system.

4.8 UNIT TESTING

Each python question was unit tested to ensure correctness. This

was done using pythons built in “unittest” library. An example for

the factorial unit test can be seen in Figure 11. Test cases for power,

binaryTree and square share a similar format.

5. EVALUATION AND RESULTS

Evaluation was done with 20 first year computer science students

currently completing their CS1016S course. The students were

given a smaller version of the final software tool and tasked with

completing a subset of the questions and, afterward, a questionnaire

based on the popular standard Game Experience Questionnaire [17]

to evaluate their user experience. The key aspects we aimed to look

at are: usability, learning and gameplay experience. The students

were asked to complete the factorial question only for this stack

simulation section.

The usability of the text editor interface had a mostly positive

response. Almost 90% of students claimed it was easy to use to type

their own code. Syntax highlighting was a feature requested by one

of the students. One student requested that it be clearer where they

should type their own code, while another student wanted the

specific line of code that was being executed to be highlighted as

the code ran.

In terms of their interaction with the simulation itself, the simple

block style of the simulation was a positive aspect about 50% of

students enjoyed it with the other half not having any issues with it.

One student wanted the speed of the animation to be variable as

they found it to be slow. However, the step function solved this

issue by allowing the student to go through the stack progress at

their own pace.

90% of students rated the factorial question as beginner level and

reported that the low difficulty of the question was a good idea so

their focus could be on the actual stack simulation rather than their

problem-solving ability. One student found it difficult to interpret

the preexisting code and would have preferred to be able to write

their entire solution to the problem themselves.

Overall, 80% of students claimed the software to be extremely

helpful in supplementing their understanding of recursion and the

stack. These student’s claimed that such software would have been

useful to have when they first started learning recursion as it

demystified the concept of the call stack which they claimed was

not easily grasped.

5.1 GAME EXPERIENCE QUESTIONNAIRE

The Game Experience Questionnaire (GEQ) is a standardized

questionnaire developed to assess a users’ experiences with various

aspects of a given game [19]. There are 7 sections with each

evaluated with a score out of 5. The scores for each section can be

seen below.

Component Score*

Competence 3.64

Sensory/Imaginative Immersion 4.11

Flow 3.65

Tension/Annoyance 1.3

Challenge 2.01

Figure 11: Factorial 5 Unit Test Case

 UCT 20 April 2019, Cape Town, South Africa

Negative affects 1.29

Positive affects 4.52

*1 – Not at all 2 – Slightly 3 – Moderately 4 – Fairly 5 - Extremely

The competence component assessed whether students felt they

could use the simulator and answer the questions easily or not.

Sensory and imaginative immersion involves the aesthetics of the

simulator and whether users enjoyed the look and feel of it. The

flow component aims to assess the difficulty curve of the questions

and how the student’s experience with the simulator changed as

they progressed through it. The challenge component indicates

whether the students felt challenged when answering the questions

and using the simulator. The tension component assesses any

difficulties or negative experiences with using the simulator. The

negative and positive components are indicative of how boring,

tiresome or fun and engaging using the simulator is.

The scores recorded in Figure 11 show that overall, the simulator

is highly usable and enjoyable to use for students hoping to better

understand the role of the stack when it comes to their recursive

programs.

6. DISCUSSION
Based on the results from the students and literature review on

visualization, games and the gamification of difficult to learn

content in the context of computer science, this type of software

tool can be hugely beneficial for students. Although gamification

and visualization are used in many aspects when it comes to

teaching programming, we find that not many attempts have been

made to gamify or simulate recursion in a visual way, even though

it is a fundamental concept especially for new computer science

students. Students’ interest and enthusiasm to engage with the

content was apparent and many found it extremely useful to have

an additional resource in the form of a simulation to help them

understand recursion as a problem-solving method. Visualization

was a key factor for learners in helping them understand the abstract

concepts relating to the active and passive flow of recursion.

The usability of the software itself was largely positive. Even

though the UI was largely simplistic, it was well received as

students quickly understood what to do and what functionality was

provided to them. The students could therefore focus on

understanding the growing and shrinking of the stack as the

simulator executed.

7. CONCLUSION AND FUTURE WORK

There is a clear opportunity to explore alternative methods of

teaching recursion in the computer science classroom. Lectures and

lab assessments are the current standard but there are clearly more

ways of engaging students with programming material.

Gamification and visualization are well received by students and

many report how useful it can be to take a fresh new approach to

learning a concept. Recursion, being one of the first and

fundamental concepts students learn in the early part of any CS

degree, is clearly a good option to explore and expand upon in terms

of variety of teaching methods. The benefits of this cannot be

understated as a good fundamental understanding of recursion is

extremely useful for understanding more advanced problem-

solving methods later.

A visualization of the call stack for recursive problems is not

something that is deeply explored when the tradeoff of a good fully

functional stack simulator could clear up many of the

misconceptions of how recursion works behind the scenes, that

being, the active and passive flow of the execution of a recursive

program. The stack simulator that was developed and described in

this paper shows that the concept can be visualized even if it only

operates for a certain set of questions. The feedback from new

computer science students was overwhelmingly positive and it’s

clear that if such a software was introduced on a larger scale in

lectures to supplement lectures on recursion, the benefits could be

substantial in aiding students understanding. Having a solid

fundamental understanding of recursion at an early stage can have

significant benefits for students later on in their computer science

careers.

A more general simulator that works for any type of program (not

just recursive ones) that can take the form of an IDE plug-in or IDE

itself could be the future of visual programming. The simulator

described in this paper could form the basis of a better, more robust

and general stack simulator that could be used for more than just

recursive programs. The main limitation of the simulator described

in this paper is the fact that it is limited to 4 recursive questions and

was designed specifically with these questions in mind. As a result,

any other type of question’s solution may not function correctly in

the simulator. With the use of Unity as the development platform,

future iterations may be ported for use in a web browser using

Unity’s built in Web Player. This would allow easier and more

cross platform access.

It is hoped that any deeper exploration into the topic of visualizing

and simulating recursive programs may find the stack simulator

developed in this paper to be an inspiration for any future software

tools developed for this purpose.

REFERENCES

1. McCracken, D.D. Ruminations on Computer Science

Curricula. Communications of the ACM. 30, 1: (January

1987), 3-5.

2. Eagle, M., & Barnes, T. (2009). Experimental evaluation

of an educational game for improved learning in

introductory computing. ACM SIGCSE Bulletin, 2009,

321-325.

3. Thomas L. Naps. Rudolf Fliesher. Myles McNally. 2002.

Exploring the role of visualization and engagement in

computer science education.

Figure 12: GEQ Scores

UCT 20 April 2019, Cape Town, South Africa S. Mohamed. .

4. John Stasko, Albert Badre. Clayton Lewis. 1993. Do

Algorithm Animations Assist Learning? An Empirical

Study and Analysis.

5. Tessler, J., Beth, B., & Lin, C. (2013). Using cargo-bot

to provide contextualized learning of recursion.

Proceedings of the Ninth Annual International ACM

Conference on International Computing Education

Research - ICER ’13. doi:10.1145/2493394.2493411

6. Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon,

L. (2012). A Serious Game for Developing

Computational Thinking and Learning Introductory

Computer Programming. Procedia - Social and

Behavioral Sciences, 47, 1991–1999.

doi:10.1016/j.sbspro.2012.06.938

7. Ginat, D, Shifoni, E. (1999) Teaching Recursion in a

Procedural Environment -

How much should we emphasize the Computing Model?

ACM SIGCSE Bulletin 35(1), 346

doi:10.1145/792548/612004

8. Tamarisk Lurlyn Scholtz and Ian Sanders. Mental

models of recursion: Investigating students’

understanding of recursion. In Proceedings of the

Fifteenth Annual Conference on Innovation and

Technology in Computer Science Education, ITiCSE ’10,

pages 103–107, New York, NY, USA, 2010. ACM.

9. Wirth, M.: Introducing Recursion by Parking Cars.

SIGCSE Bulletin 40(4), 52–55 (2008)

10. Edgington, J.: Teaching and Viewing Recursion as

Delegation. J. Computing Sciences in Colleges 23(1),

241–246 (2007)

11. Pirolli, P.L. and Anderson, J. R‘. The role of learning

from examples in the acquisition of recursive

programming skills. Canadian Journal of Psychology 39

(1985), 240-272.

12. Kurland, D. M. and Pea, R. D. Children’s mental models

of recursive LOGO programs. In Proceedings of the 5th

Annual Conference of the Cognitive Science Society

(1983), Session 4,,1-5.

13. Kahney, H. (1983). What do novice programmers know

about recursion. Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems - CHI ’83.

doi:10.1145/800045.801618

14. Bierre , Kevin J. and Andrew M. Phelps. The use of

MUPPETS in an introductory java programming course,

SIGITE 2004, October 28-30, 2004, Salt Lake City, UT,

USA.

15. EleMental: The Recurrence Andrew Hicks, Katelyn

Doran, Graduate Advisor: Amanda Chaffin, Mentor: Dr.

Tiffany Barnes

16. Fred Bartels (April 2012) Recursion and the Stack.

Available from:

https://www.youtube.com/watch?v=s8JpA5MjYac

17. Oracle’s Netbeans IDE [Computer Software], (2018)

Version 8.2.Retrieved from

www.netbeans.org/downloads/8.2/

18. Harry Fairhead (March 2019) The LIFO Stack – A

Gentle Guide, viewed 20 August 2019 <https://www.i-

programmer.info/babbages-bag/263-

stacks.html?start=1>

19. IJsselsteijn, W. A., De Kort, Y. A. W., & Poels, K.

(2013). The game experience questionnaire. Eindhoven:

Technische Universiteit Eindhoven.

20. Honours Project Website:

http://projects.cs.uct.ac.za/honsproj/cgi-

bin/vuew/2019/tony_shak_raeez.zip/csa/index.html.

